
Code Analysis Tool Parallelisation

and

Grid ComputingGrid Computing

1

AnnaAnnaAnnaAnna----Jayne MetcalfeJayne MetcalfeJayne MetcalfeJayne Metcalfe

Riverblade Limited

http://www.riverblade.co.uk



� For a code analysis tool to be effective, it needs to:

� Be straightforward to configure and use

� Produce meaningful and accurate results

Effective Code Analysis

� Produce analysis results reasonably quickly

� Be accepted by those who need it

� In this session we are going to focus on analysis 

speed and techniques for improving it.

2



� Detailed source code analysis is inherently slow

� C++ in particular is complex and extremely hard to 

analyse correctly

The Problem

� Include files are veryveryveryvery inefficient from an analysis 

perspective

� Repeated opening of common include files, each of 

which must be preprocessed etc.

3



� Simple, but inefficient:

Conventional Code Analysis

Analyse Analyse AnalyseCore 1

4

Core 2 Idle

e.g. 4 hrs 26 mins for an example 178kLOC 

codebase (on a 2.2GHz Opteron with 5GB RAM)



� Independent analysis tasks are veryveryveryvery amenable to 
parallelisation:

Local Parallel Analysis

Analyse Analyse AnalyseCore 1

5

Core 2 Analyse Analyse Analyse

e.g. 2 hrs 22 mins for a 178kLOC codebase 

(2.2GHz Opteron with 5GB RAM). 1.9x faster...



� Parallelisation works well if tasks are independent

� Local parallelisation is quite straightforward:

� Generate the command line

Parallel Analysis Considerations

� Run the task in a thread pool

� Collate results as each task completes

� Optimal number of parallel tasks is rather subjective

� 3 seems to work well for a dual core machine

6



� Independent analysis tasks are amenable to parallelisation:

Grid Parallel Analysis

PC 1

Analyse Analyse Analyse

Analyse Analyse Analyse

Core 1

Core 2

7

PC 2

Analyse Analyse Analyse

Analyse Analyse Analyse

Core 1

Core 2

Analyse Analyse AnalyseCore 2

e.g. 15 mins 10 secs for a 178kLOC codebase

(16 cores; aggregate CPU speed 40GHz). 17x faster!



� Significantly trickier than local parallelisation

� Include files and preprocessing can be a problem

� Efficient use of network bandwidth is important

� Two contrasting approaches:

Grid Analysis Considerations

� Preprocessing on the local system (distcc etc.)

� File system virtualisation and caching (Xoreax XGE and 

possibly Electric Accelerator)

� With a virtualised grid, a networked solution is not 

much more difficult than a local parallelised solution

8



� PC-lint 9 can use “precompiled header file” techniques 
to speed up the analysis:

PCH Code Analysis

Precompile

(to .lph file)
Analyse AnalyseCore 1

9

(to .lph file)
Analyse AnalyseCore 1

Core 2 Idle

e.g. 1 hr 13 mins for a 178kLOC codebase 

(2.2GHz Opteron with 5GB RAM). 3.6x faster...



� Requires reasonably careful scheduling:

Parallel Analysis with PCH

Precompile

(to .lph file)
Analyse Analyse

Core 1

10

(to .lph file)Core 1

Core 2 Analyse Analyse

e.g. 46 mins 5 secs for a 178kLOC codebase 

(2.2GHz Opteron with 5GB RAM). 5.8x faster...

Idle



� Requires veryveryveryvery careful scheduling:

Grid Analysis with PCH

PC 1

Precompile Analyse Analyse

Analyse Analyse

Core 1

Core 2 Idle

11

PC 2

Analyse Analyse

Analyse Analyse

Core 1

Core 2

Analyse AnalyseCore 2

May or may not be faster than a non-PCH grid 

solution, depending on the scheduling!

Idle

Idle

Idle



Conclusion

DescriptionDescriptionDescriptionDescription TimeTimeTimeTime SpeedSpeedSpeedSpeed

Single threaded; No PCH 4:25:44 x1.0

Parallelised (3 threads) 2:22:16 x1.9

Single threaded with PCH 1:13:41 x3.6

� Comparative Timings:

� Any Questions?

12

Single threaded with PCH 1:13:41 x3.6

Parallelised with PCH 0:46:05 x5.8

Grid (16 cores; 40GHZ) 0:15:10 x17.5

Grid (23 cores; 54.7GHz) 0:12:10 x21.5

Grid with PCH ??? ???


