

Code Analysis Tool Parallelisation and Grid Computing

Anna-Jayne Metcalfe Riverblade Limited http://www.riverblade.co.uk

Effective Code Analysis

• For a code analysis tool to be effective, it needs to:

- Be straightforward to configure and use
- Produce meaningful and accurate results
- Produce analysis results reasonably quickly
- Be accepted by those who need it
- In this session we are going to focus on analysis speed and techniques for improving it.

- Detailed source code analysis is inherently slow
- C++ in particular is complex and extremely hard to analyse correctly
- Include files are very inefficient from an analysis perspective
 - Repeated opening of common include files, each of which must be preprocessed etc.

Parallel Analysis Considerations

- Parallelisation works well if tasks are independent
- Local parallelisation is quite straightforward:
 - Generate the command line
 - Run the task in a thread pool
 - Collate results as each task completes
- Optimal number of parallel tasks is rather subjective
 - 3 seems to work well for a dual core machine

6

Grid Analysis Considerations

- Significantly trickier than local parallelisation
 - Include files and preprocessing can be a problem
 - Efficient use of network bandwidth is important
- Two contrasting approaches:
 - Preprocessing on the local system (distcc etc.)
 - File system virtualisation and caching (Xoreax XGE and possibly Electric Accelerator)
- With a virtualised grid, a networked solution is not much more difficult than a local parallelised solution

Conclusion

Comparative Timings:

Description	Time	Speed
Single threaded; No PCH	4:25:44	x1.0
Parallelised (3 threads)	2:22:16	x1.9
Single threaded with PCH	1:13:41	x3.6
Parallelised with PCH	0:46:05	x5.8
Grid (16 cores; 40GHZ)	0:15:10	x17.5
Grid (23 cores; 54.7GHz)	0:12:10	x21.5
Grid with PCH	???	???

• Any Questions?

Riverbla de 12